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Preface

Finally, as all our observations, on account of the imperfection of the
instruments and of the senses, are only approximations to the truth,
an orbit based only on the six absolutely necessary data may be still
liable to considerable errors. In order to diminish these as much as
possible, and thus to reach the greatest precision attainable, no
other method will be given except to accumulate the greatest number
of the most perfect observations, and to adjust the elements, not so
as to satisfy this or that set of observations with absolute exactness,
but so as to agree with all in the best possible manner. [1:51]

Carl Friedrich Gauss, quoted above, was the founder of estimation theory. He laid

the ground work for all modern estimation. Today, optimal estimation has been

claimed by the Kalman filter. This study used the iterated, extended Kalman filter

to investigate the performance of an on-board filter used to estimate the relative

positions of a cluster of satellites navigating in the presence of realdynamics. But

it wasn't just the Kalman filter that allowed this research to be possible.

Thank you to all who aided me in this endeavor. I wish to specifically thank

Dr. William E. Wiesel, my thesis advisor, for his patience, guidance and good

humor during this research. Additionally, I want to thank Dr. Wiesel and Dr.

Rodney Bain for the enjoyment I received from their astrodynamics classes. Also

I thank Dr. Peter Maybeck for his time and counsel. I wish to thank Capt John

Gustafson for his advice.



My unending love and thanks are due my wife Joan and son Stephen for

their patience, understanding and support for these past months. Finally, I thank

our Lord for the endurance to see this through. I pray in some way this serves His

purpose, otherwise it will have been for nothing.

J. Timothy Middendorf
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Abstract

Previous work in the area of estimation of relative positions within a satellite

cluster showed favorable results. However, the work was done using point mass

orbits in the tuth model. This thesis investigates the estimation of relative satellite

positions operating in near circular orbit including the J2 term in Earth's

geopotential. The iterated, extended Kalman filter is used as the on-board

estimator in order to gain better performance in the face of the non-linearities. The

dynamics in the estimator are based on ti-,e Clohessy-Wiltshire equations for

relative orbital motion. Inputs to the host estimator are range measurements from

each satellite in the cluster. The relative position to the host satellite is

investigated. A comparison of the true error and the rms covariance was

performed.
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NAVIGATION OF A SATELLITE CLUSTER

WITH REALISTIC DYNAMICS

I. Introduction

Past studies have shown the feasibility of using a recursive filter for

on-board estimators to determine the relative positions of satellites for use as a

space based radar system [5,7,10]. Good results were obtained using two-body

point mass astrodynamics and an on-board estimation model with the dynamics

based on the Clohessy-Wiltshire equations.

The initial work at AFIT was done by Captain Michael Ward using the U-D

covariance factorization Kalman filter with the Clohessy-Wiltshire equations.

However, he encountered observability problems in the down range state

component [10:2-17]. Further investigation into the observability problem was

conducted by Captain Sherrie Norton Filer [5] and Captain Stephen Johnston [7].

Captain Filer obtained mixed results from her investigation into unobservable

states. Captain Johnston furthered the effort and realized the Clohessy-Wiltshire

equations could not determine the position and velocity of each satellite from the
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origin on the reference orbit based on range measurements between the satellites.

Only relative position and velocity could be determined from the host satellite to

each other satellite [7:29]. The host satellite considers itself the center of the

coordinate frame. After this was identified and analysis done, the results were

favorable. He obtained 3 cm accuracy, well beyond the 25 m requirement.

However, the truth dynamics were based on a homogeneous, spherical

Earth; effectively treating the Earth as having point mass gravity. This ignores one

of the most dominant perturbative influences of a satellite's orbit. The Earth's

rotation produces a bulge at the equator and large structures such as mountain

ranges produce variations in the local mass. The effect of this oblateness and

non-homogeneity is a non-uniform gravitational field. Although other effects are

present as well, such as air drag and solar pressure, this thesis employs a truth

model which accounts for the non-uniform gravity field only.

This thesis investigates the estimation of relative satellite motion in the

presence of these real dynamics. The truth model computer program was

developed to include the J2 term of Earth's geopotential. Since there are

significant non-linearities between the truth dynamics and the estimator dynamics,

the estimator developed was the iterated, extended Kalman filter [9:58].

The nominal orbital altitude (1000 km), cluster radius (500 meters), and

accuracy requirements (25 meters) remain the same as the previous investigations

[10:1-1 ,App A]. The accuracy is based on the requirement of the radar to form a
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cohesive image using the combined data from each satellite. In order to achieve

this, the relative position of each satellite must be known to at least one quarter

of the radar wavelength [10:1-1].

The initial concept employed a cluster of up to 10 satellites orbiting in near

circular, low Earth orbit. Capt Johnston realized each satellite's relative state was

independent of the other [7:29]. Therefore, only a two satellite cluster will be

investigated. The procedure can be generalized to include more satellites in the

cluster.

In this work, the origin of the rotating reference frame is centered on

satellite # 1 which will contain the on-board estimator being investigated. The truth

model is the ruler against which the estimator is placed. A comparison of true

error and rms covariance will be made [8:337].
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II. Background

The fundamental purpose of this investigation is to compare the estimation

with real dynamics. This is done by generating a truth model based on real

dynamics and comparing with the results achieved from the filter's estimation of

the state. In this way, the same mission can be run over and over with different

random noise in the range to analyze the filter's performance.

The truth model computer program was written to include the J2 term of

Earth's geopotential. The J2 term is the most dominant term in the geopotential,

beyond the Newtonian point mass orbit potential. It accounts for both periodic and

secular variations in an orbit. The J2 effects cause the secular variations to be the

dominant perturbation source in the Mean Anomaly, M, Argument of Perigee, Co,

and the Right Ascension of the Ascending Node, D, near 1000 km. Figure 1 and

Figure 2 show the Newtonian (constant) value, the theoretically predicted secular

variation and the actual secular variation in o and Q respectively.

The predicted secular variations are given by [4:3691:

= w+ 3t = + -3J 2 R!t (2- 5sin 2j)2a 2(1 - e2)2  2

K2= K0 + 2t = 0 - 3r 1J2F't cost
2a2(1 - e2)2
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Figure 1. Comparison of the Newtonian, predicted and actual secular variation
in the Argument of Perigee, (o, due to J2.
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Figure 2. Comparison of Newtonian, predicted, and actual secular variation in
the Right Ascension of the Ascending Node, Q, due to J2-
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where:

71 = Mean Motion

J2= Zonal harmonic coefficient of the geopotential

a = Semi-major axis

e = Eccentricity

t = Inclination of the orbit

The actual secular variation shows oscillations periodic with the orbit. This

is due to the periodic variations in a, e and i of the orbit due to J2. These plots

verify the proper functioning of the orbit determination part of the truth model. The

actual variations with the periodicity in the orbit follow the predicted variations as

expected.

The estimator computer program was written as an iterated, extended

Kalman filter employing the Clohessy-Wiltshire equations for the dynamics to

predict the state. It uses range measurements from the truth model to update the

predicted state. The truth model generates the relative position and velocity of the

cluster and provides the estimator with inputs of range corrupted with white

Gaussian noise. The estimator uses these inputs to generate its correction to the

relative position elements of the state. It also generates an estimate of its error,

the covariance. This covariance is compared to the true error to allow tuning the

filter.

6



2.1 Truth Model

2.1.1 Coordinate Frame Definition

The problem is presented using three coordinate frames. Two of these

frames will be employed through out the thesis and one serves only to ease the

set-up of the initial conditions of the second satellite. The frames are; the inertial

frame centered on the Earth, the rotating frame centered on the host satellite, and

the third is the inertial frame aligned with the rotating frame.

The first frame is referenced in the truth model. The equations of motion

in the truth model for each satellite are defined in the inertial frame with

components ( X, Y', . ). R is aligned with the First Point of Aries (T), 2 the

rotation axis of the Earth, and Y' completes the right hand orthogonal set.

The second frame, the rotating frame, is fixed to satellite 1. It has

components, ( , i, h ) where, ? is along the radius vector from the center of

the Earth to satellite 1, h is perpendicular to the orbital plane and

completes the right hand orthogonal set. This frame is the frame referenced in the

estimator. Once satellite 2's position is found inertially, the relative position from

satellite 1 is found and transformed into the rotating frame.

The third frame is only used to define the initial inertial conditions of satellite

2 using the Clohessy-Wiltshire equations to provide appropriate initial velocities.

7



This frame is simply the inertial frame ( X, Y, Z ) rotated to align with the rotating

frame and has components ( P, 6, W ). After the initial conditions are specified

only the inertial ( X, (, 2 ) and the rotating ( h, I, ) frames will be used.

Figure 3 illustrates these frames.

n

Sat 2

z r

Figure 3. Coordinate frame definition.
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2.1.2 Initial Conditions

Initial conditions are specified by a reference orbit for the host satellite and

specifying the relative state of satellite 2. Once a reference orbit is specified for

satellite 1, the host, satellite 2's initial relative state is defined in the rotating frame.

Satellite 1 's initial state is defined in the inertial frame and expressed in the rotating

frame. This initializes satellite 1's state in the truth model and the filter. Satellite

2's initial state is defined in the rotating frame about satellite 1. Its state is also

expressed in the inertial frame. This initializes both the truth and filter models for

satellite 2.

The initial position and velocity of satellite 1, and therefore the rotating

reference frame, are arbitrarily chosen to have the following classical elements,

a=1.156784906 (1000 km altitude), e=0.0001 1, t=28.50, 0c=300, Q=500 and v=00.

The initial location of this rotating frame in the inertial frame ( X, Y, Z ) is easily

obtained from the classical elements [1:71,82] via the ( P, (, W ) frame.

The position and velocity in the P, 0, W frame are expressed as:

r = rcosvP + rsinv6 (2)

=al -e 2 )  [-sinva e [ (e~cosv)Q] (3)

9



These are rotated into the inertial frame ( X, Y, Z ) by:

ryF R ro and Vy]= R o] (4)
rz rw vz LVw

where,

[cosQcos&-sinQsinccost -cos!sino-sinicoswcost sinQsint (5)
R sincoso)+cosnsin(wcosi -sinQsi no+cosfcosocost -cosKsint

[ sincosint cos~osint cost

With the classical elements given above, the initial position and velocity of

the rotating frame expressed in the inertial frame in canonical units are:

0.25453861
R= 1.09403658 DU (6)

I -0.84098533
V, = 0.09874202 }U (7)

0.38425099T

where, 1 DU = 6378.145 km and 1 TU = 806.8118744 secs. These are found by

defining Earth's gravitational constant, lie = 1 DU3/TU2 = 3.986012 X 105

km 3/sec 2.
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Since the rotating frame is in a near-circular orbit (e=.0001 1), the

transformation, [T] , from the inertial frame ( R, Y(, 2 ) to the rotating frame

f, 1, ,h ) is determined from the host satellite's position and velocity:

{ =[TI T(8)

where,

[R1

[T,] = [Tn] X [T] (9)

[T ] = [R X ]

and R and V are the radius and velocity of satellite 1 in the inertial coordinates.

The position elements of satellite 2's state are randomly placed about the

rotating origin:

r2 = {n2}*(500 meters) (10)

where n2 is a vector of random numbers between -0.5 and 0.5.
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It is rotated into the inertial frame ( X, 'Y, Z ) to be used by the truth model. The

position of satellite 2 in the inertial frame is found by:

= [T] T 1'[T]T(11,,)

With the position of satellite 2 specified in both frames, the velocity is

defined using the Clohessy-Wiltshire equations. The Clohessy-Wiltshire equations

(see Section 2.2.1) allow appropriate values for radial and out-of-plane velocity

components in the ( P, 6, W ) frame. Both the radial and out-of-plane velocity

components are found by multiplying the relative distance expression by the mean

motion of the reference orbit and then equating to the relative velocity expression.

Since this frame is initially aligned with the rotating reference frame,

V2 P = 1r2 P (12)

V2 VV = Tr 2 VV (13)

where r1 = the mean motion of the reference trajectory.

In order to maintain cluster integrity by reducing drift, the orbital periods of

each satellite must be the same. The orbital period in the two-body Newtonian

point mass orbit is a function of the semi-major axis only and completely removes

12



drift. Letting this be the starting point for the perturbed orbit, the two-body energy

equation is used to determine the third component of the velocity. Utilizing this

equation and assuming the semi-major axis is constant and the geopotential is

based on a point mass yields:

V2 Q = 2'_ I - (V2 .V2)I5 - (V2 .V2)/} (14)

These velocity components are expressed in the rotating frame to be used

by the estimator as follows:

V2reI[?,. = v2[,..] - (w x r2)[?,] (15)

where, initially, V2[,,] = (V2  - Vl)[,.6.*]

The velocity components are expressed in the inertial frame to initializE the truth

model by

V 2[0.2.] =  [T ]T V 2[P,,] (16)
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Therefore, the initial state to the estimator is

= 
(17)

and the initial state to the truth -iodel isit
XT(0) = (1 )R 2

2.1.3 Dynamics

Having defined the initial conditions, the truth model state must be found at

subsequent times. Previous studies used Newtonian point mass dynamics for the

truth model. As addressed above, this maintained the cluster's integrity well.

However, the Earth is non-spnerical and non-homogeneous, which causes drift to

appear in the real dynamics. Orbits based on the point mass relative dynamics

and the Clohessy-Wiltshire dynamics retrace themselves since there is no

perturbations present. Figure 4 is a plot of 10 orbits of both the point mass

relative dynamics and the Clohessy-Wiltshire dynamics. There is no perceptible

difference after 10 orbits. Figure 5 shows the distinct difference in the relative

14
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Figure 4. Point mass and Clohessy-Wiltshire orbits (10 orbits).
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TRUTH and CLOHESSY-WILTSHIRE Relative Orbits with J2
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Figure 5. Real dynamics and Clohessy-Wiltshire orbits (10 orbits).
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orbits of the real dynamics and the Clohessy-Wiltshire dynamics. Later this will

play an important factor in the performance analysis.

This difference is due to the oblateness of the Earth and the gravitational

potential. The Earth's geopotential including the J2 zonal harmonic term and

neglecting the other non-vanishing higher order terms is [12:84]:

2

U= _ R . 1(3cos2 - 1 )j 2  (19)

where:

R = (X 2 +y2 +Z2)1" 2

cosO = 

(0

Rf (20)

R6 = radius of the Earth

g = Earth's gravitational constant

The truth model uses the potential of Eq (19) expressed in the inertial frame as

(X2 +y2 +Z2)1 2 - 2(X2 R + y2 +Z2)3"2 X2+Y2+Z2

With J2 set to 0, the geopotential is simply the Newtonian point mass potential.
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The future position and velocity of satellites 1 and 2 are determined inertially

by numerically integrating the equations of motion. Integration is done using a

predictor-corrector routine called HAMING [12:110] (see Appendix A). HAMING

requires a subroutine called RHS (Right Hand Side). This subroutine contains the

right hand side of the state-differential equations of motion:

X=Y( = VY

x'= V u

V 1 RX 
3  2R 2  R 2  (22)

, yau Y 1  3J 2R (5Z2

= R3= 2Y R 2  R

V aU _ _ p1Z 3 J2 R( 3 5Z 2 /f

z z R 3 2 R 2 R 2,

A sample rate for the estimator is preselected in order to generate range

data for the estimator. The sample rate determines how frequently the states of

satellites 1 and 2 will be used to calculate the range provided to the estimator. At

each of these sample times the relative state for satellite 2 is determined by:

(t) - RI() (23)

V,.[R,,,]= {V2(t) - V,(t)}

18



The coordinate transformation matrix, [T] , is re-evaluated by Eq (9). The

relative position and velocity are rotated into the rotating frame as follows:

{7 }r'~]= 
(24)

where,

{ V }II A = j T IT{ ~ R e[ , , (25)

Finally, the truth model generates the range measurement for the estimator

by

zn = eI?, ,i + un (26)

where un is a zero-mean, white Gaussian noise with its associated covariance of

Rn [8:330]. The noise is the representation of measurement inaccuracies as well

as other error sources [10:2-6].

2.2 Filter Model

The choice of the iterated, extended Kalman filter was made in light of the

significance of the non-linearities of the system, both in the observation relationship

and the dynamics [9:58]. The iteration occurs at each data sample in order to

19



modify the reference trajectory with a better estimate of the state. After

convergence, which was chosen to be a difference of 0.0001 in each iterated

position element, or a specified number of iterations, chosen to be 8, the final

reference state is deemed the new estimate with its associated covariance.

One puvntial problem with the Kalman filter is "starting" the filter, since the

first time propagation occurs before any data is sampled. Therefore, the initial

state is considered known from the truth model as described in Section 2.1.2. The

initial covariance, P0, must also be specified. P0 will be considered diagonal with

initial position and velocity covariance of 25 n and 1 (m/s) 2, respectively. These

result from an assumption of an initial position accuracy of 5 m and velocity

accuracy of 1 m/s. These will be replaced with more appropriate values as the

filter is tuned.

2.2.1 Dynamics (Clohessy-Wiltshire Equations)

The state is propagated forward to the time of next data acquisition. Since

the dynamics, governed by the Clohessy-Wiltshire equations, are linear (see

below), the state and covariance propagation are defined by [8:220]:

0(27)

20



P(t) = 4((t, t,_)P(t,,)D T( t,ti_,1 ) + GT(t,,)Od(t,)GT(t,) (28)

where,

ad is the covanance of the dynamics noise.

i(t,) is the estimated state after time propagation.

i(t,) is the estimated state after the measurement update.

Gd is the identity matrix for this equivalent-discrete-time representation of

a continuous-time system [8:3771.

4 is the state transition matrix.

The state is propagated to time (t,) by means of D:

= (t,) (29)
i(t o )

Figure 6 illustrates the state propagation and data acquisition [8:207].

II> Time
x(t 1 )x(t ') x(t

zoti. 1 ) z(t i)

Figure 6. State propagation and update.
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The equations of relative motion used to develop the Clohessy-Wiltshire

equations are defined as follows (13:80]:

81f - 2jro60 - 3Ti28r = 0 (30)

roe 2 6 " = 0 (31)

6 +28z = 0 (32)

where, 8r, r080, and 6z are the f, 1, h coordinates respectively.

These coordinates will be defined as x, y, and z for the remainder of the thesis.

It should be noted, these are a first order form of the Newtonian point mass

relative equations of motion.

Eqs (30), (31), and (32) are readily integrated since they are a set of linear,

constant-coefficient differential equations. Applying the initial conditions,

fxo f*0'
(0) yo , *(o) =

zo Jo J

22



the solutions are El13:80-81]

X(t) 90+ 3 OCsT 1t+ 4 xO 2. k (33)

~~I~t) ko 2 (3 fX) o60 iT~+2 (34)

y~) y 30+ 6IO + -+xoiT~ ~cosljt

z(t) = zOcos Tit + 2 0sin 71t (35)
1I

*(t) = (2 '0 + 3Tix 0 )sin 71t + cos Tt (36)

y~)=(-3 0 - 6Tx 0 ) + (6,nxo + 4k 0 )cos ilt - 2x.sin Tt (37)

2(t) = -zOr~sin Tt + ±Ocos Tjt (38)

23



Now the state transition matrix is determined by Eq (29):

4-3cos 0 0 -sinv .i.(1 -cosy) 0
'1I

6 (sin,-,) 1 0 .(cos ,-1) .sinW-.1, 0

IoD 0 cos'., 0 0 -sinW (39)

3Tlsin4 0 0 cosw 2sinji 0

6 1j(cos -I ) 0 0 -2siny -3+4cosy 0

0 0 -TnsinW 0 0 cosw

where, 4f 71t and t is the sample time.

The state is propagated to the new data acquisition time by Eq (27), and in

general, Eq (27) becomes:

(2 0 ..- 0 2(t,_,)

i(t,-) 0 03 0 i 3(t,) (40)

0 0

where the subscripts reference each satellite in the cluster.
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0 need only be evaluated once given the sample interval, (t,_,) to (t,) . This is

one of the major benefits of linear dynamics.

2.2.2 Iterated, Extended Kalman Filter

With the initial state and covariance propagated to time (t,), the

measurement update, z,, is incorporated by means of the state and covariance

update equations. Data is typically not a scalar, and therefore the expectation of

the data is typically a vector and is denoted by h. The bold notation is retained

for both the data and its expectation for the remainder of the thesis. Since z, is the

range, it is expected to be of the form of h, which is defined as

h = {x2 + + z}11/2 (41)

In general, h becomes

+ Y + Z h,

x + y2 + zhJ1/2(42)

where, x, y, and z are the components in the ( f, , ) i,-ame.
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The expectation, h, is linearized and evaluated at i(t,) by

H =a (43)
a x . (t )

which becomes

H Y Zo001 (44)

In general, H has the form

H2 0 0 ... 0

H 0 H1 0 0 (45)

0
-0 0 0 "" H$ 1

where,

HS 1 =X- - S1 0 0 01
= ~ ~ Z~i ~0 o](46)

h$_1 hl hS_
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The state update is given by [9:59]:

Xk,. = ,(t,-) + K(t) z,- h(Rk,t,) - H(ik,t,)[i(t,) - }4

where,

K(t,) = P(t7)HT(k,t)[H(k,t )P(t)HT( k,t,) + R(t,)]- (48)

for k = 0, 1, 2, ..., N-1.

R(t;) is the covariance of the noise in the data.

The iterated, extended Kalman filter update equations are a slightly modified

form of the extended Kalman filter update equations [9:44,59]. The iterated

method uses the updated state estimate R(t;+) , generated by the standard

extended Kalman filter, "as a better state estimate than R (t) for evaluating h and

t1 in the measurement update relations" [9:58].

This is important since the h vector is the expectation of the data, z,, and

is used to evaluate the residual,

ri = zi - h (R(t)) (49)
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found in the state update equation, Eq (47).

It is seen that ii is actually i(t,) given by the standard Ka!-'an filter

[9:59]. When the specified number of iterations have been made or

when I'k - 'K-1 I is less than a predetermined amount, RN is declared the new

reference trajectory; that is,

(t )(50)

The new reference trajectory is now permanently updated, with a covariance

of

P(t,) = P(t7) - K(t,)H[R(t),t,]P(ti) (51)

This iterative method reevaluates the observation relations, h and H, with

each Rk to achieve a better reference trajectory. This done to cc'rect for the

nonlinearities in the observation and the dynamics of the system.
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l. Performance Analysis

3.1 Performance Evaluation

Assessment of the filter's performance is accomplished by companng the

true error and root mean square covariance [8:337]. By graphically comparing the

true error and the root mean square covariance, the filter can be "tuned". This

method of tuning will give a general assessment of the filter's capabilities of

tracking the other satellites in the cluster.

In order to perform the comparison, the position elements of both models

are extracted from the complete state by

Yt = C1Xt (52)
S= CR

Since the states are the same for both models,

[1000001
C = C, = 1 0 0 00 (53)

0100
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The true error is depicted in Figure 7 and is defined as[xf _x1
e = y, = Y Y, (54)

In order to effectively use the true error, its magnitude, le, I, is compared

with the rms of the trace of P,. P0 is given by

pe = CPCT (55)

The root mean square of the trace of P, is defined as
C2 2 2)1/2 (56)

P, - (trP0 )"2 = ( + + o)

where, a2 is the covariance for each diagonal position element. The true error and

rms covariance will be utilized in Section 3.3 and following.

x C
Wt Trunm et

!Model +

Figure 7. Performance evaluation with no feedback of a Kalman filter.
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3.2 Truth Model Validation

The relative position part of the truth model was validated by running a

launch trajectory from an orbiting vehicle as was done in [3:56]. The trajectory

was a AV of 60 m/sec at a launch angle of 450 from a near circular orbit. The

truth model orbit was given an eccentricity of 0.00011. Dunning compared the

Clohessy-Wiltshire solution with the exact solution of the relative equations of

motion. Figure 8 shows the same results as obtained in [3:56].

x10 5  TRUTHs Relative Trajectories
0.5 1

-solid, Clohessy-Wiltshire solution Delta-V=60ms
-dash, TRUTHs solution @ 45 deg

0

-0.5 .

-2.5'I I

-14 -12 -10 -8 -6 4 -2 0 2

Del Y [meters] x10 5

Figure 8. Comparison of the Clohessy-Wiltshire and truth model solutions.
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3.3 Filter Model Validation

The filter's general behavior is determined by running it with no dynamics

noise. This is accomplished by providing the filter with Qd = 0 and analyzing the

behavior of the true error and the rms covariance. With Qd = 0, the true error,

jetj, and rms covariance, Ps, were plotted and are shown in Figure 9.

As expected the true error diverges while the rms covariance converges

toward zero since the filter has total confidence in its dynamics. This confidence

will be tempered with dynamics noise in order to keep the filter's estimate from

J2 on and off With No Dynamics Noise
10

__ True Error J2 off

.... True Error J2 on

S8:
--- RMS Covariance

6

U

0 0.5 1 1.5 2 2.5 3 3.5 4

Orbits

Figure 9. True error and rms covariance for J2 on and off with no dynamics
noise.
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reaching perfection. Notice, however, that the divergence is larger in the case with

J 2 on. This also is expected in light of the significant non-linearities and coupling

in the equations of motion with J2 present.

The filter was tested against the work done by Capt Johnston [7:36-37].

The J2 term was toggled off in order to directly compare the results with his. The

PO and Qd from Capt Johnston's work were used in the iterated, extended Kalman

filter. Results were similar to his. After minor tuning, the iterated, extended

Kalman filter yielded a true error near 8 cm, as seen in Figure 10.

J2 "ofr Comparison
0.35

True Error

0.3 RMS Covariance

E0.25

> 0.2

S 0.1 2 4 6 8 10 12 14 16 18 2
02

OrbitsFigure 10. J 2 off comparison with Capt Johnston's work.
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3.4 Filter Tuning Against J2

The values of ad from the J2 off case were used to serve as a starting point

to tune against the truth model with J2 on. The results of this are shown in

Figure 11. As can be seen, more tuning is needed and there is a strong

divergence near 20 orbits. After numerous attempts to adjust Qd by keeping the

diagonal elements for position and for velocity the same, the filter did not tune out

the divergence near 20 orbits. This was investigated further. By extending to 86

orbits the true error transient at 20 orbits appeared to be the only transient. The

J2 on Using Tuned J2 off Qd
35

_True Error

30 RMS Covariance

20

U

100-
5-

00 -- --- - -- -- --- - -- -- - - -- -- -- - --- -- -- -- -. - -. -- -- -- -- -- -- --.I. --. -. - -- - --- -- - -- --.I-- - .

0 5 10 15 20

Orbits

Figure 11. True error vs rms covariance for J2 on using the J2 off ad-
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behavior of the filter beyond 20 orbits was far from steady-state. The true error

was diverging as can be seen in Figure 12. The transient remainea after severa!

attempts to achieve steady-state for the true error and rms covarance by adjusting

the position elements and the velocity elements the same. Since the filter was

running in single precision, the possibility of a numerical precision problem was

investigated.

18

16 -

- 14:
E

S 10-
C4 True Error

8- --- RMS Covariance

6-

S 4

2

0 10 20 30 40 50 60 70 80 90

Orbits

Figure 12. True error transient.
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3.4.1 Numerical Precision Investigation

The filter was programmed to operate in single precision. This was done

to simulate the on-board software. As a simple check, the filter was run in double

precision. The filter performed the same as in single precision. Figure 13 shows

the comparison for approximately 20 orbits. Further investigation into the

dynamics was warranted.

8 Precision Comparison

True Error single precision
6 - _ RMS Covariance

.7 4-

2 
j

> 0 2 4 6 8 10 12 14 16 18 20

0
Orbits

double precision
6-

S4-
2-

0 '
0 2 4 6 8 10 12 14 16 18 20

Orbits

Figure 13. Comparison of running the filter in single precision and double
precision.
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3.4.2 Individual Component Investigation

In order to isolate the state elements that were causing this behavior, the

position true error and rms covariance were plotted for each axis. Figure 14

indicates the y and z components as having the most error accounting for the

transient and divergence. The Clohessy-Wiltshire equations uncouple the z

position and velocity components, and do not account for the drift in the relative

orbits. This is consistent with the actual relative orbits depicted in Figure 5.

Following this, all six position and velocity elements were then adjusted

individually.

The uncertainty in the dynamics is attributed to an uncertainty in the

accelerations due to J2. These are represented by velocity elements in d. To get

a handle on these elements, an acceleration based on the amount of drift in each

direction was found. From these accelerations, the elements of Qd were obtained.

Appropriate values for the accelerations were obtained from the distance the

vehicles have drifted in each direction per orbit,

ddrft = I adMtt 2  (57)

where appropriate values for ddf were obtained from Figure 5, and t is the orbital

period of approximately 6300 seconds. Using a ddftY of 20 m (200 m/l0 orbits),

ad.ftY is approximately 1 X 10-6 m/s 2. Similarly, for dd,,fZ of 5 m, adf.Z is 2.5 X 10 7
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X Axis
True Error

6- RMS Covariance

4-

2

0
0 10 20 30 40 50 60 70 80 90

Orbits

20 Y Axis

15-

0-

0 0

U 0 10 20 30 40 50 60 70 80 90

Orbits

0. 8 Z Axis

0 I

0 10 20 30 40 50 60 70 80 90

Orbits

Figure 14. Component breakout of true error and rms covarnance.
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m/s 2. The x component shows little drift, and therefore adfl. will be based on a

dd,.ftX equal to the range measurement error assumed, (.01 m). This equates to an

adlftl of 5 X 10-10 m/s 2.

Using these accelerations, better estimates of the velocity elements of Qd

were found by

Qdvv v, = (adrixyzA t) 2  (58)

Using an update rate of 300 seconds yields v, vy, and vz elements of 2.25 X 1014

m2/s 2, 9 X 10- m2/s 2, and 5.6 X 10- m2/s 2 respectively. By using Eq (57) with t =

At a better estimate of the position elements of Qd were found. Using the update

rate of 300 seconds gives the x, y, and z elements of 2.25 X 10-5 M 2, 4.5 X 10 2

m 2 , and 1.1 X 10-2 respectively. The results using these values are shown in

Figure 15.

3.4.3 Utilizing the Kozai Mean Motion

Even with these values for 0 d, the filter still was not tuning out the transient.

The dynamics model in the estimator was augmented. The Clohessy-Wiltshire

equations are in the desired linear form. In order to keep the equations linear the

mean motion was changed to the Kozai form.
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J2 "on" With New Qd
18

16 - True Error
--- RMS Covariance

14

S12

S10-

2

0 5 10 15 20 25

Orbits

Figure 15. True error and rms covariance with a better estimate of the velocity
elements of Qd.

The Kozai form is given by [4:369]

71K + 2a 2(1 J2) 2 (1 - 3sin2t) (59)

The relative orbits displayed in Figure 16 show the effect of using 11K.

This approach at incorporating J2, only improves the prediction of the drift in the

y direction. It doesn't couple the equations of motion. Therefore, the y

components of position and velocity will need less noise than anticipated above.
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TRUTH and CLOHESSY-WILTSIRE Relative Orbits with J2 and Kozai MM

-500 I

_2000 -1500 -1000 -500 0 500
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400

200-

S 0-

-200-W

-4001
-2000 -1500 -1000 -500 0 500

Y [meters]

200-

0-

N
-200

-4001
-500 -400 -300 -200 -100 0 100 200 300 400 500
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Figure 16. Real dynamics and Clohessy-Wiltshire equations using TIK (10 orbits).
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With this in mind numerous attempts were made at tuning th~e filter. The filter

showed results that had some sort of steady-state behavior as seen 1 , Figure 17.

3.5 "Tuned" Performancp Analysis

The filter "tuned" against J2 did not perform as well as against the

Newtonian truth model. This might be expected since the filter dynamics are a 1 st

order approximation of the point mass orbit, while the J2 truth model is highly non-

J2 "on" Performance3.51 11 11

Truc Error

3 --- RMS Covariance

2.5.

> 2

1.5-

0

0.5
0 1

0 10 20 30 40 50 60 70 80 90

Orbits

Figure 17. "Tuned" filter performance.
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linear and coupled with a perturbing acceleration. "Steady-state" is seen in

Figure 17 to be approximately 1 to 2 meters. Although its performance does not

compare to the point mass analysis, the filter still remains within the allowed

tolerance of 25 meters for the 86 orbits.

3.6 Long Term Performance

Although Figure 17 shows the true error below the 25 meter accuracy

requirement for as long as 86 orbits, the behavior is questionable when compared

to the J2 off case. The final analysis was to determine if the filter's dynamics had

sufficient fidelity to model the J2 effects or if the iterated, extended Kalman filter

was not providing adequate response. In order to assess this, both the J2 on and

J2 off case were run for 30 days.

The filter remained "steady-state" for quite awhile before exhibiting non-

steady-state behavior in the true error for the J2 cn case. This divergence is

greater in amplitude than the previous transient at 20 orbits. Figure 18 shows the

long term behavior of 30 days. The true error diverged, while the rms covariance

did not converge. Figure 19 shows the J2 off case run for 30 days as well.

Both cases were run using sample times varying from 112 seconds to 300

seconds in order to improve the filter's response. No significant improvements

resulted; therefore, the 300 second sample time was used in order to keep
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Figure 18. 30 cday behavior of the filter with J2 on.
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computation time down.

The filter showed smooth behavior for the J2 off case for the entire 30 days.

This indicates the iterated, extended Kalman filter has adequate ability to handle

the problem if the dynamics models are comparable. Since the performance in the

J2 on case is poor compared to the J2 off case, it is evidence that the filter

dynamics do not have adequate ability to model the truth dynamics.
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IV. Conclusions and Recommendations

The use of the iterated, extended Kalman filter yielded satisfactory results

for the J2 off case, given the accuracy requirements. However, the analysis

presented here indicates the performance is poor for the filter dynamics model

when run against the J2 on case. This indicates the filter dynamics need to be

modified more substantially than was done. The Clohessy-Wiltshire equations had

good performance against the Newtonian point mass dynamics, due to the fact

they are the first order form of the point mass dynamics. Any update in the filter

was readily propagated forward to first order accuracy. This is a significant factor

of the filter's performance.

However, only the range was used as data, and therefore only partially

modified the position and velocity elements of the state, given the observation

relationships, Eqs (41) and (44). Against the Newtonian point mass dynamics, the

velocity elements did not necessarily need to be updated with data since the

dynamics already had good fidelity of the truth dynamics. In contrast, against the

J2 truth dynamics, the fidelity of the Clohessy-Wiltshire equations was poor, as

seen in Figure 5 and Figure 16. This is primarily due to the uncoupling of the z

components and the exclusion of J2 effects.

Although the Clohessy-Wiltshire equations are valid for any down range

relative position, they are valid only for small relative positions in the radial and
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out-of-plane components [13;80], and hence only small periods of time. The filter

uses the Clohessy-Wiltshire trajectory only for a small period of time, the sample

period. In this sample period the state changes only by a small amount.

Therefore, the dynamics may give sufficient performance for the sample period,

but the state not being fully updated may prevent adequate performance against

J2 on. The significant amount of tuning by adjusting diagonal elements of ad tried

to overcome these problems.

Improved performance should be obtainable by either improving the filter

dynamics or by including range rate in the filter's observation relationships. The

first assumes a linear form of relative motion equations to include J2 effects,

eccentricity and coupling of the equations of motion. The second assumes the

satellite's ability to sense range rate. However, this may complicate the satellite's

hardware design too much, negating the idea to keep the satellites as simple as

possible.

Further work should include a better filter dynamics model such as

referenced in [6]. Alternately, both range and range rate observation relationships

should be used. Having established the new dynamic or observation relations, a

complete Monte-Carlo analysis should be run. Since the filter is required to

perform for several satellites, it should be run against several initial conditions to

evaluate its robustness.
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Appendix A: Haming Subroutine

SUBROUTINE HAMING(NXT)

* Version of 11/07/90

* Purpose
* Subroutine for integrating a system of first order differential
* equations. It is a fourth order predictor-corrector algorithm
* which means it carries the last four values of the state vector,
* and extrapolates these values to obtain a predicted next value
* (the prediction step) and evaluates the equations of motion at
* the predicted point, and then corrects the extrapolated point
* using a higher order polynomial (the correction step).
* Input
* NXT = specifies which of the four values of the state vector is
* the current one. NXT is updated by HAMING automatically,
* but must be set to ZERO on the first call.
* Call Subroutines
* RHS(NXT) = evaluates the equations of motion
* External Functions
* None
* Common Blocks
* HAM = Memory block shared by the main driver and subroutine RHS.
* The common block contains:
* X = is the independent variable (often time)
* Y(MAX,4) = the state vector (4 copies), with NXT pointing to
* the current one, the limit of MAX EOM can be changed

* through the PARAMETER in main driver, sub program
* RHS, and below.
* F(MAX,4) = are the EOM evaluated at the same times as the state
* vector Y ... it is the job of sub program RHS to
* calculate these.

* ERR(MAX) = is an estimate of the one-step integration error
* N = is the number of ODES ... limit is MAX unless you change
* the PARAMETER statement in main driver, sub program
* RHS, and below.
* H = is the timestep ... one call to HAMING increments X by H
* References
* "Numerical Methods for Scientists and Engineers", Richard W. Hamming;
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* McGraw- Hill, 2nd Ed., 1973; pp. 361-408

* Donald G. M. Anderson -- Harvard (1972)
* Original program modified by Dr. William E. Wiesel and Dr. Rodney Bain.
* Comments
* TOL = is HAMING's startup tolerance ... set to reasonable value
* as necessary in PARAMETER statement.
* The user must supply a main driver, and the subroutine RHS(NXT)
* which evaluates the equations of motion.

IMPLICIT REAL*8 (A-H,O-Z) ! Global double precision
PARAMETER (ZERO=O.DO, ONE=1.DO, TWO=2.DO, THREE=3.DO,
1 FOUR=4.DO, MAX=42, TOL=1.D-12)
COMMON /HAM/ X,Y(MAX,4),F(MAX,4),ERR(MAX),N,H

* Check if this is the first call ... HAMING (like all predictor-
* correctors) needs 'previous' values

IF(NXT) 190,10,200

* It is a forward Picard iteration (slow and expensive) to step
* backwards in time three steps to get the 4 previous points. A
* successful startup returns NXT=I, and time has not been
* incremented. If startup fails, NXT will be returned as ZERO.

10 XO=X
HH=HITWO
CALL RHS(1)
DO 40 L=2,4

X=X+HH
DO 20 1=1,N

20 Y(I,L)=Y(I,L-1 )+HH*F(I,L-1)
CALL RHS(L)
X=X+HH

DO 30 1=1,N
30 Y(I,L)=Y(I,L-1)+H*F(I,L)
40 CALL RHS(L)

JSW=-1 0
50 ISW=1

DO 120 1=1,N
HH=Y(l, 1 )+H*(9.DO*F(I, 1 )+19.DO*F(1,2)-5.DO*F(l,3)
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1 +F(I,4))/24.DO
IF( DABS(HH-Y(I,2)) .LT. TOL) GOTO 70
lsw=0

70 Y(l,2)=HH
HH=Y(I, 1)+H*(F(1,1 )+FOUR*F(I,2)+F(I,3))FrHREE
IF( DABS(HH-Y(1,3)) .LT. TOL) GOTO 90
Isw=0

90 Y(l,3)=HH
HH=Y(I, 1)+H*(THREE*F(l, 1)+9.DO*F(I,2)+9.DO*F(1,3)

1 +THREE*F(I,4))/8.DO
IF( DABS(HH-Y(I,4)) .LT. TOL) GOTO 110
Isw=0

110 Y(l,4)=HH
120 CONTINUE

x=xO
DO 130 L=2,4

X=X+H
130 CALL RHS(L)

IF(ISW) 140,140,150
140 JSW=JSW+1

IF(JSW) 50,280,280
150 X=XO

lsw=1
Jsw=1
DO 160 1=1,N

160 ERR(l)=ZERO
NXT=1
GOTO 280

" A call to HAMING with NXT=-NXT, after a successful startup,
" will turn off the second evaluation of the equations of motion
" following the corrector step. In systems where the equations of
" motion are very expensive, this can halve your run time.

190 JSW=2
NXT=lABS(NXT)

" This is the predictor-corrector algorithm ... first the indices
*are premuted.

200 X=X+H
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NP1 =MOD(NXT,4)+1
GOTO (210,230),ISW

210 GOTO (270,270,270,220),NXT
220 ISW=2
230 NM2=MOD(NP1 ,4)+1

NM1 =MOD(NM2,4)+l
NPO=MOD(NM1 ,4)+1

... then the predictor part is run to find an extrapolated value
*of the state vector at the new time..

DO 240 l=1,N
F(l,NM2)=Y(l,NP1 )+FOUR*H*(TWO*F(l,NPO)-F(l,NM1)

1 +TWO*F(l,NM2))/THREE
240 Y(I,NP1 )=F(l,NM2)-0.92561 9835D0*ERR(l)

*The equations of motion are evaluated at the extrapolated value
*of the state vector..

CALL RHS(NP1)

*and the corrector algorithm is used to add this new information
*and obtain a better value of the new state vector ..

DO 250 1=1,N
Y(l,NP1 )=(9.DO*Y(l,NPO)-Y(l,NM2)+THREE*H*(F(l,NP1)

1 +TWO*F(I,NPO)-F(,NM1 )))/8.DO
ERR(l)=F(l,NM2)-Y(l,NP1)

250 Y(l,NP1 )=Y(I,NP1 )+0.0743801 65300*ERR(I)
GOTO (260,270),JSW

*Finally, the equations of motion are re-evaluated at the better
*value of the state vector ... this can be suppressed.

260 CALL RHS(NP1)
270 NXT=NP1

280 RETURN
END
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